Combinatorics at $\aleph_{\omega+1}$ in Prikry-type extensions

Ryan Holben

Department of Mathematics University of California Irvine

2013 Joint Mathematics Meeting

글 🕨 🖃 🔁

Overview

Background

- Large Cardinals
- Singular Cardinal Combinatorics
- Square

Our ResultsMain Results

3 Future Work

Large Cardinals Singular Cardinal Combinatorics Square

Cofinality

Definition

For an infinite limit ordinal lpha, we define the **cofinality**:

 $cf(\alpha) =$ the least limit ordinal eta such that there is an increasing

eta-sequence $ig\langle lpha_{\xi} \mid \xi < etaig
angle$ and $\lim_{\xi o eta} lpha_{\xi} = lpha$

- A cardinal κ is regular iff $cf(\kappa) = \kappa$.
- A cardinal κ is singular iff $cf(\kappa) < \kappa$.

Large Cardinals Singular Cardinal Combinatorics Square

Cofinality

Definition

For an infinite limit ordinal lpha, we define the **cofinality**:

 $cf(\alpha) =$ the least limit ordinal eta such that there is an increasing

eta-sequence $ig\langle lpha_{\xi} \mid \xi < etaig
angle$ and $\lim_{\xi o eta} lpha_{\xi} = lpha$

- A cardinal κ is regular iff $cf(\kappa) = \kappa$.
- A cardinal κ is singular iff $cf(\kappa) < \kappa$.

Large Cardinals Singular Cardinal Combinatorics Square

Cofinality

Definition

For an infinite limit ordinal lpha, we define the **cofinality**:

 $cf(\alpha) =$ the least limit ordinal eta such that there is an increasing

eta-sequence $ig\langle lpha_{\xi} \mid \xi < etaig
angle$ and $\lim_{\xi o eta} lpha_{\xi} = lpha$

- A cardinal κ is regular iff $cf(\kappa) = \kappa$.
- A cardinal κ is singular iff $cf(\kappa) < \kappa$.

Large Cardinals Singular Cardinal Combinatorics Square

Large Cardinals

• We may postulate the existence of large cardinals.

Common Large Cardinals

- Measurable, Weakly Compact, Supercompact, Woodin, etc.
- In a model of "ZFC + LC" or "ZFC + ¬LC" what principles must hold?
- We use large cardinals to measure the **consistency strength** of various mathematical concepts.

Large Cardinals Singular Cardinal Combinatorics Square

Large Cardinals

• We may postulate the existence of large cardinals.

Common Large Cardinals

- Measurable, Weakly Compact, Supercompact, Woodin, etc.
- In a model of "ZFC + LC" or "ZFC + ¬LC" what principles must hold?
- We use large cardinals to measure the **consistency strength** of various mathematical concepts.

Large Cardinals Singular Cardinal Combinatorics Square

Large Cardinals

• We may postulate the existence of large cardinals.

Common Large Cardinals

- Measurable, Weakly Compact, Supercompact, Woodin, etc.
- In a model of "ZFC + LC" or "ZFC + ¬LC" what principles must hold?
- We use large cardinals to measure the **consistency strength** of various mathematical concepts.

Large Cardinals Singular Cardinal Combinatorics Square

Large Cardinals

• We may postulate the existence of large cardinals.

Common Large Cardinals

- Measurable, Weakly Compact, Supercompact, Woodin, etc.
- In a model of "ZFC + LC" or "ZFC + ¬LC" what principles must hold?
- We use large cardinals to measure the **consistency strength** of various mathematical concepts.

Large Cardinals Singular Cardinal Combinatorics Square

Singular Cardinal Combinatorics

Some Interesting Combinatorial Principles

- SCH
- Tree Property
- Square principles

Ryan Holben Combinatorics at $\aleph_{\omega+1}$ in Prikry-type extensions

Large Cardinals Singular Cardinal Combinatorics Square

Singular Cardinal Combinatorics

Some Interesting Combinatorial Principles

- SCH
- Tree Property
- Square principles

Large Cardinals Singular Cardinal Combinatorics Square

Singular Cardinal Combinatorics

Some Interesting Combinatorial Principles

- SCH
- Tree Property
- Square principles

Ryan Holben Combinatorics at $x_{\omega+1}$ in Prikry-type extensions

Large Cardinals Singular Cardinal Combinatorics Square

Tree Property

Definition

We say that κ has the **tree property** iff every κ tree has a cofinal branch.

 The tree property at κ⁺ and □(κ⁺) cannot both hold in the same model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ����

Large Cardinals Singular Cardinal Combinatorics Square

Tree Property

Definition

We say that κ has the **tree property** iff every κ tree has a cofinal branch.

 The tree property at κ⁺ and □(κ⁺) cannot both hold in the same model.

Definition

- We say that $ec{C}=ig\langle C_{\xi}\mid \xi\in \mathsf{lim}(\kappa,\kappa^+)ig
 angle$ is a $\Box(\kappa^+)$ sequence iff :

 - $\textbf{O} \ \ (\mathsf{Coherency}) \ \forall \xi \ \text{if} \ \beta \in \mathit{lim}(\mathit{C}_{\xi}) \ \text{then} \ \mathit{C}_{\xi} \cap \beta = \mathit{C}_{\beta}$
 - (No thread) There is no club D in κ^+ that coheres with our sequence.
 - We say " $\Box(\kappa^+)$ holds" if there exists a $\Box(\kappa^+)$ sequence.

() Other related principles include: \Box_{κ} , $\Box_{\kappa,\alpha}$, global square, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQ@

Definition

- We say that $ec{C}=ig\langle C_{\xi}\mid \xi\in \mathsf{lim}(\kappa,\kappa^+)ig
 angle$ is a $\Box(\kappa^+)$ sequence iff :

 - $\textbf{O} \ \ (\mathsf{Coherency}) \ \forall \xi \ \text{if} \ \beta \in \mathit{lim}(\mathit{C}_{\xi}) \ \text{then} \ \mathit{C}_{\xi} \cap \beta = \mathit{C}_{\beta}$
 - (No thread) There is no club D in κ^+ that coheres with our sequence.
 - **(**) We say " $\Box(\kappa^+)$ holds" if there exists a $\Box(\kappa^+)$ sequence.

1 Other related principles include: \Box_{κ} , $\Box_{\kappa,\alpha}$, global square, etc.

Definition

- We say that $ec{C}=ig\langle C_{\xi}\mid \xi\in \mathsf{lim}(\kappa,\kappa^+)ig
 angle$ is a $\Box(\kappa^+)$ sequence iff :

 - $\textbf{O} \ \ (\mathsf{Coherency}) \ \forall \xi \ \text{if} \ \beta \in \mathit{lim}(\mathit{C}_{\xi}) \ \text{then} \ \mathit{C}_{\xi} \cap \beta = \mathit{C}_{\beta}$
 - (No thread) There is no club D in κ^+ that coheres with our sequence.
 - **(**) We say " $\Box(\kappa^+)$ holds" if there exists a $\Box(\kappa^+)$ sequence.
 - **3** Other related principles include: \Box_{κ} , $\Box_{\kappa,\alpha}$, global square, etc.

	Background Our Results Future Work	Main Results
A First Result		

Theorem

$Con(ZFC + \exists a \text{ certain type of } SC) \rightarrow Con(ZFC + \neg \Box(\aleph_{\omega+1}))$

Ryan Holben Combinatorics at $\aleph_{\omega+1}$ in Prikry-type extensions

	Background Our Results Future Work	Main Results	
Current Work			

Theorem

$Con(ZFC + \exists \kappa \ SBC + \ meas.) \rightarrow Con(ZFC + \Box_{\aleph_{\omega},2} + \neg \Box_{\aleph_{\omega}})$

Ryan Holben Combinatorics at $\aleph_{\omega+1}$ in Prikry-type extensions

Future Work

- Consistency of $\Box_{\aleph_{\omega},n+1} + \neg \Box_{\aleph_{\omega},n}$
- Onsistency of global square at singular cardinals.
 - Open problem from a paper of Cummings & Friedman

For Further Reading I

