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Co�nality

De�nition

For an in�nite limit ordinal α , we de�ne the co�nality:

cf (α) = the least limit ordinal β such that there is an increasing

β -sequence
〈
αξ | ξ < β

〉
and limξ→β αξ = α

A cardinal κ is regular i� cf (κ) = κ .

A cardinal κ is singular i� cf (κ)< κ .
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Large Cardinals

We may postulate the existence of large cardinals.

Common Large Cardinals

Measurable, Weakly Compact, Supercompact, Woodin, etc.

In a model of �ZFC + LC� or �ZFC + ¬LC� what principles
must hold?

We use large cardinals to measure the consistency strength

of various mathematical concepts.
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Singular Cardinal Combinatorics

Some Interesting Combinatorial Principles

SCH

Tree Property

Square principles
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Tree Property

De�nition

We say that κ has the tree property i� every κ tree has a co�nal

branch.

The tree property at κ+ and �(κ+) cannot both hold in the

same model.
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De�nition

We say that ~C =
〈
Cξ | ξ ∈ lim(κ,κ+)

〉
is a �(κ+) sequence i� :

1 ∀ξ Cξ is club in ξ

2 (Coherency) ∀ξ if β ∈ lim(Cξ ) then Cξ ∩β = Cβ

3 (No thread) There is no club D in κ+ that coheres with our

sequence.

1 We say ��(κ+) holds� if there exists a �(κ+) sequence.

1 Other related principles include: �κ , �κ,α , global square, etc.
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Main Results

A First Result

Theorem

Con(ZFC+∃ a certain type of SC)→ Con(ZFC+¬�(ℵω+1))
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Current Work

Theorem

Con(ZFC+∃κ SBC + meas.)→ Con(ZFC+�ℵω ,2+¬�ℵω
)
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Future Work

1 Consistency of �ℵω ,n+1+¬�ℵω ,n

2 Consistency of global square at singular cardinals.

1 Open problem from a paper of Cummings & Friedman
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Appendix For Further Reading

For Further Reading I

J. Cummings and S. Friedman.

� on the singular cardinals,

The Journal of Symbolic Logic, 2008.
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